Regularization Methods for Large Scale Machine Learning

Alessandro Rudi
University of Genova - Istituto Italiano di Tecnologia
Massachusetts Institute of Technology
lcsl.mit.edu

In collaboration with: Raffaello Camoriano, Lorenzo Rosasco

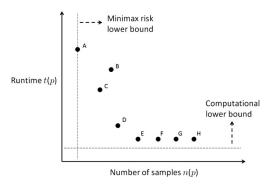
May 6th, 2017 - RegML, Oslo

Machine learning Algorithms

Desiderata

- ▶ flexible non-linear / non-parametric models
- scalable computation
- statistical guarantees

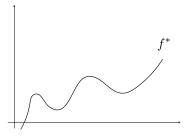
Statistics and computations



(Chandrasekaran, Jordan '12)

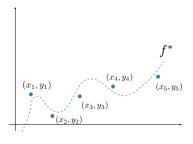
Supervised Learning

Problem: Estimate f_*



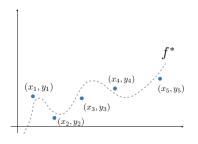
Supervised Learning

Problem: Estimate f_* given $S_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$



Supervised Learning

Problem: Estimate f_* given $S_n = \{(x_1, y_1), \dots, (x_n, y_n)\}$



Setting

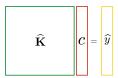
$$y_i = f^*(x_i) + \varepsilon_i \qquad i \in \{1, \dots, n\}$$

- $ightharpoonup \varepsilon_i \in \mathbb{R}, x_i \in \mathbb{R}^d$ random (unknown distribution)
- $ightharpoonup f_*$ unknown

Recall Kernel Ridge Regression

$$\widehat{f}^{\lambda}(x) = \Phi(x)^{\top} \widehat{w}^{\lambda} = \sum_{i=1}^{n} K(x, x_i) \widehat{c}_i^{\lambda}, \qquad \widehat{c}^{\lambda} = (\widehat{K} + \lambda nI)^{-1} \widehat{y}$$

- $\Phi(x)^{\top} \Phi(x') = K(x, x')$ kernel, e.g. Gaussian
- $ightharpoonup \widehat{K} \ n$ by n data matrix
- $ightharpoonup \widehat{y}$ outputs vector



Computational complexity

Time: $O(n^3)$ Memory: $O(n^2)$

Statistical Guarantees

Let $\mathcal{E}(f) = \mathbb{E}(y - f(x))^2$.

Theorem (Caponetto, DeVito '05)

Assume $\exists w$ such that $f_*(x) = w^{\top} \Phi(x)$, subexp noise, and bounded kernel. Then w.h.p.

$$\mathcal{E}(\widehat{f}^{\lambda}) - \mathcal{E}(f_*) \lesssim \frac{1}{\lambda n} + \lambda,$$

so that for $\lambda_n = 1/\sqrt{n}$, w.h.p.

$$\mathcal{E}(\widehat{f}^{\lambda_n}) - \mathcal{E}(f_*) \lesssim \frac{1}{\sqrt{n}}.$$

Remarks

- Bound is minimax optimal (Caponetto, DeVito '05)
- Adaptivity via cross validation or Lepskii method (Caponetto, Yao '07, De Vito Pereverzev R. '07)
- ▶ Refined results, e.g. for Sobolev classes rate is $n^{-\frac{2s}{2s+d}}$ (Caponetto, DeVito '05)

Computational complexity kills the method for large problems

Computational complexity

Time: $O(n^3)$ Memory: $O(n^2)$

BIG DATA

Where it is possible to run Kernel Ridge regression

- ▶ $n \approx 10~000$ Laptop (~ 1 Gigabyte memory),
- ▶ $n \approx 100~000$ Desktop (~ 100 Gigabyte memory),
- ▶ $n \approx 1000~000$ Cluster (~ 10 Terabyte memory),
- ▶ $n \approx 10~000~000$ Supercomputer (TOP10) ($\sim 1~$ Petabyte memory)

High energy physics experiments: $n \approx 10^7$ per second...

Outline

- ► Data independent subsampling
- ▶ Data dependent subsampling
- ► Adaptive subsampling

An idea

If
$$K(x, x') = \Phi_{\mathbf{M}}(x)^{\top} \Phi_{\mathbf{M}}(x')$$
 with $\Phi_{\mathbf{M}}(x) \in \mathbb{R}^{\mathbf{M}}$

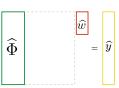
$$\widehat{f}^{\lambda,M}(x) = \Phi_{\boldsymbol{M}}(x)^{\top} \widehat{w}^{\lambda,M} \qquad \widehat{w}^{\lambda,M} = (\widehat{\Phi}^{\top} \widehat{\Phi} + \lambda nI)^{-1} \widehat{\Phi}^{\top} \widehat{y}$$

An idea

If
$$K(x,x') = \Phi_{M}(x)^{\top} \Phi_{M}(x')$$
 with $\Phi_{M}(x) \in \mathbb{R}^{M}$
$$\widehat{f}^{\lambda,M}(x) = \Phi_{M}(x)^{\top} \widehat{w}^{\lambda,M} \qquad \widehat{w}^{\lambda,M} = (\widehat{\Phi}^{\top} \widehat{\Phi} + \lambda nI)^{-1} \widehat{\Phi}^{\top} \widehat{y}$$

$$\widehat{\Phi} = (\Phi_M(x_1), \dots \Phi_M(x_n))^\top \in \mathbb{R}^{n \times M}$$

- $\triangleright \widehat{w}^{\lambda,M}$ vector in \mathbb{R}^M
- $ightharpoonup \widehat{y}$ outputs vector in \mathbb{R}^n



Computational complexity

Time:
$$O(n^3) \rightarrow O(nM^2)$$

Memory:
$$O(n^2) \rightarrow O(nM)$$

Kernel Approximation

Find $\Phi_{\boldsymbol{M}}(x) \in \mathbb{R}^{\boldsymbol{M}}$ such that

$$K(x, x') \approx \Phi_M(x)^{\top} \Phi_M(x')$$

Apply previous algorithm.

Random Fourier Features

Gaussian Kernel

$$e^{-\gamma \|x - x'\|^2} = \mathbb{E}_{\omega} \left[e^{i\omega^{\top} x} e^{-i\omega^{\top} x'} \right], \quad \omega \sim \mathcal{N}(0, \gamma)$$

Random Fourier Features

Gaussian Kernel

$$e^{-\gamma \|x-x'\|^2} = \mathbb{E}_{\omega} \left[e^{i\omega^{\top}x} e^{-i\omega^{\top}x'} \right], \quad \omega \sim \mathcal{N}(0, \gamma)$$

$$\approx \frac{1}{M} \sum_{j=1}^{M} e^{i\omega_{j}^{\top} x} e^{-i\omega_{j}^{\top} x}, \quad \omega_{j} \sim \mathcal{N}(0, \gamma),$$

Random Fourier Features

Gaussian Kernel

$$e^{-\gamma \|x - x'\|^2} = \mathbb{E}_{\omega} [e^{i\omega^{\top} x} e^{-i\omega^{\top} x'}], \quad \omega \sim \mathcal{N}(0, \gamma)$$

$$\approx \frac{1}{M} \sum_{j=1}^{M} e^{i\omega_j^{\top} x} e^{-i\omega_j^{\top} x}, \quad \omega_j \sim \mathcal{N}(0, \gamma),$$

$$\Phi_M(x) := \frac{1}{\sqrt{M}} (e^{i\omega_1^\top x}, \dots, e^{i\omega_M^\top x}).$$

Random Features Expansion

Find q such that

$$K(x, x') = \mathbb{E}_{\omega} [q(x, \omega)q(x', \omega)],$$

Random Features Expansion

Find q such that

$$K(x, x') = \mathbb{E}_{\omega} [q(x, \omega)q(x', \omega)],$$

sample $w_1, \dots w_M$ and consider

$$K(x, x') \approx \Phi_M(x)^{\top} \Phi_M(x') := \frac{1}{M} \sum_{j=1}^{M} q(x, \omega_j) q(x, \omega_j).$$

$$\Phi_M(x) := \frac{1}{\sqrt{M}}(q(x,\omega_1),\dots,q(x,\omega_M)).$$

Examples of Random Features

- translation invariant kernels,
- dot product kernels,
- group invariant kernels,
- ▶ infinite **neural nets** kernels,
- homogeneous additive kernels,
- sum, products, composition of kernels,

Computations

If
$$M \ll n$$

► TIME:

$$O(nM^2) \ll O(n^3)$$

► SPACE:

$$O(nM) \ll O(n^2)$$

Any loss in ACCURACY?

Previous Results

- ► *Many* different random features for different kernels (Rahimi, Recht '07, Vedaldi, Zisserman, ...10+)
- ► Theoretical guarantees: mainly **kernel approximation** (Rahimi, Recht '07, ..., Sriperumbudur and Szabo '15)

$$|K(x,x') - \Phi_M(x)^{\top} \Phi_M(x')| \lesssim \frac{1}{\sqrt{M}},$$

► Theoretical guarantees: generalization bounds (Rahimi, Recht '09, Bach, '15)

$$\mathbf{M} = \mathbf{n} \quad \Rightarrow \quad \mathcal{E}(\widehat{f}^{\lambda,M}) - \mathcal{E}(f^*) \le \frac{1}{\sqrt{n}}$$

Statistical Guarantees

Let $\mathcal{E}(f) = \mathbb{E}(y - f(x))^2$.

Theorem (R., Camoriano, Rosasco '16)

Assume $\exists w$ such that $f_*(x) = w^{\top} \Phi(x)$, subexp noise, and bounded kernel.

Then w.h.p.

$$\mathcal{E}(\widehat{f}^{\lambda,M}) - \mathcal{E}(f_*) \lesssim \frac{1}{\lambda n} + \frac{1}{M} + \lambda,$$

so that for

$$\lambda_n = \frac{1}{\sqrt{n}}, \quad M_n = \frac{1}{\lambda_n}$$

the following hold w.h.p.

$$\mathcal{E}(\widehat{f}^{\lambda_n, M_n}) - \mathcal{E}(f_*) \lesssim \frac{1}{\sqrt{n}}.$$

Remarks

- ▶ Bound is minimax **optimal**, same as Tikhonov
- Adaptivity via cross validation or Lepskii method
- ▶ Refined results, e.g. for Sobolev classes rate is $n^{-\frac{2s}{2s+d}}$ (R., Camoriano, Rosasco '16)

Remarks

- ▶ Bound is minimax **optimal**, same as Tikhonov
- Adaptivity via cross validation or Lepskii method
- ▶ Refined results, e.g. for Sobolev classes rate is $n^{-\frac{2s}{2s+d}}$ (R., Camoriano, Rosasco '16)

$$M=\sqrt{n}$$
 guarantees NO loss in accuracy

Computational complexity

Time:
$$O(n^3) \rightarrow O(n^2)$$
 Memory: $O(n^2) \rightarrow O(n\sqrt{n})$

Corollary: Same result if we set

$$M_n = \sqrt{n}, \quad \lambda_n = \frac{1}{M_n}.$$

lacktriangleq M can be seen as a regularization parameter

Corollary: Same result if we set

$$M_n = \sqrt{n}, \quad \lambda_n = \frac{1}{M_n}.$$

lacktriangleq M can be seen as a regularization parameter

Corollary: Same result if we set

$$M_n = \sqrt{n}, \quad \lambda_n = \frac{1}{M_n}.$$

lacktriangleq M can be seen as a regularization parameter

- ▶ 1. Pick a random feature
 - + compute solution

Corollary: Same result if we set

$$M_n = \sqrt{n}, \quad \lambda_n = \frac{1}{M_n}.$$

lacktriangleq M can be seen as a regularization parameter

- ▶ 1. Pick a random feature
 - + compute solution
 - 2. Pick another random features
 - + rank one update

Corollary: Same result if we set

$$M_n = \sqrt{n}, \quad \lambda_n = \frac{1}{M_n}.$$

▶ *M* can be seen as a *regularization parameter*

- ► 1. Pick a random feature + compute solution
 - 2. Pick another random features
 - + rank one update
 - 3. Pick another random feature . . .

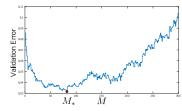
Corollary: Same result if we set

$$M_n = \sqrt{n}, \quad \lambda_n = \frac{1}{M_n}.$$

▶ *M* can be seen as a *regularization parameter*

New incremental algorithm

- ▶ 1. Pick a random feature + compute solution
 - 2. Pick another random features + rank one update
 - 3. Pick another random feature . . .



M controls at the same time: Space, Time, Statistics

Outline

- ► Data independent subsampling
- ► Data dependent subsampling
- ► Adaptive subsampling

Data dependent subsampling with Nyström

$$\{\tilde{x}_1,\ldots\tilde{x}_M\}\subseteq\{x_1,\ldots,x_n\}$$

Data dependent subsampling with Nyström

$$\{\tilde{x}_1,\ldots\tilde{x}_M\}\subseteq\{x_1,\ldots,x_n\}$$

$$\widehat{f}^{\lambda,M}(x) = \sum_{i=1}^{M} K(x, \widetilde{x}_j) \widehat{c}_i^{\lambda,M}, \qquad \widehat{c}^{\lambda,M} = (\widehat{K}_{nM}^{\top} \widehat{K}_{nM} + \lambda n \widehat{K}_{MM}^{\top})^{-1} \widehat{K}_{nM}^{\top} \widehat{y}$$

Data dependent subsampling with Nyström

$$\{\tilde{x}_1,\ldots\tilde{x}_M\}\subseteq\{x_1,\ldots,x_n\}$$

$$\widehat{f}^{\lambda,M}(x) = \sum_{i=1}^{M} K(x, \widetilde{\boldsymbol{x}_j}) \widehat{c}_i^{\lambda,M}, \qquad \widehat{c}^{\lambda,M} = (\widehat{K}_{nM}^{\top} \widehat{K}_{nM} + \lambda n \widehat{K}_{MM}^{\top})^{-1} \widehat{K}_{nM}^{\top} \widehat{\boldsymbol{y}}$$

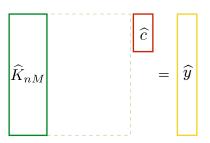
- $\widehat{(K}_{nM})_{ij} = K(x_i, \tilde{x}_j) \ n \text{ by } M \text{ matrix}$ $\widehat{(K}_{MM})_{ij} = K(\tilde{x}_i, \tilde{x}_j) \ M \text{ by } M \text{ matrix}$
- $\triangleright \ \widehat{y}$ outputs vector

$$\widehat{K}_{nM}$$
 $=$ \widehat{y}

Computational complexity

Time: $O(nM^2)$ Memory: O(nM)

Remarks



- ▶ Plenty of methods for subsampling . . .
- Connections to Nyström for integral operators
- ▶ Previous results: kernel approximation $\|\widehat{K} \widehat{K}_{nM}^{\intercal} \widehat{K}_{MM}^{\dagger} \widehat{K}_{nM} \|$.

Any loss in ACCURACY?

Statistical Guarantees

Let $\mathcal{E}(f) = \mathbb{E}(y - f(x))^2$.

Theorem (R., Camoriano, Rosasco '15)

Assume $\exists w$ such that $f_*(x) = w^{\top} \Phi(x)$, subexp noise, and bounded kernel.

Then w.h.p.

$$\mathcal{E}(\widehat{f}^{\lambda,M}) - \mathcal{E}(f_*) \lesssim \frac{1}{\lambda n} + \lambda + \frac{1}{M},$$

so that for

$$\lambda_n = \frac{1}{\sqrt{n}}, \quad \boldsymbol{M_n} = \frac{1}{\lambda_n}$$

the following hold w.h.p.

$$\mathcal{E}(\widehat{f}^{\lambda_n, M_n}) - \mathcal{E}(f_*) \lesssim \frac{1}{\sqrt{n}}.$$

Remarks

- ▶ Bound is minimax **optimal**, same as Tikhonov
- Adaptivity via cross validation or Lepskii method
- ▶ Refined results, e.g. for Sobolev classes rate is $n^{-\frac{2s}{2s+d}}$ (R., Camoriano, Rosasco '15)

$$M=\sqrt{n}$$
 guarantees NO loss in accuracy

Remarks

- ▶ Bound is minimax **optimal**, same as Tikhonov
- Adaptivity via cross validation or Lepskii method
- ▶ Refined results, e.g. for Sobolev classes rate is $n^{-\frac{2s}{2s+d}}$ (R., Camoriano, Rosasco '15)

$$M=\sqrt{n}$$
 guarantees NO loss in accuracy

Computational complexity

Time:
$$O(n^3) \rightarrow O(n^2)$$
 Memory: $O(n^2) \rightarrow O(n\sqrt{n})$

Outline

- ► Data independent subsampling
- ▶ Data dependent subsampling
- ► Adaptive subsampling

Refined Results

Can we do better than uniform sampling?

Non-uniform subsampling Select the point $\tilde{x} = x_i$ with probability p_i .

Refined Results

Can we do better than uniform sampling?

Non-uniform subsampling Select the point $\tilde{x} = x_i$ with probability p_i .

Leverage scores

$$p_i := \widehat{K}_i^{\top} (\widehat{K} + \lambda nI)^{-1} \widehat{K}_i,$$

with \widehat{K}_i the i-th column of the data matrix \widehat{K} .

Statistical Guarantees

Let
$$\mathcal{E}(f) = \mathbb{E}(y - f(x))^2$$
.

Theorem (R., Camoriano, Rosasco '15)

Assume $\exists w$ such that $f_*(x) = w^\top \Phi(x)$, subexp noise, bounded kernel, and Φ induces a Sobolev kernel with smoothness s.

When

$$\lambda_n = n^{\frac{2s}{2s+d}}, \quad M_n = n^{\frac{d}{2s+d}}$$

the following hold w.h.p.

$$\mathcal{E}(\widehat{f}^{\lambda_n, M_n}) - \mathcal{E}(f_*) \lesssim n^{-\frac{2s}{2s+d}}.$$

Remarks

- Bound is minimax, same as Tikhonov
- Adaptivity via cross validation or Lepskii method

- $lackbox{M} = n^{rac{d}{2s+d}} \ll \sqrt{n}$ guarantees NO loss in accuracy
- ightharpoonup M = O(1) if s is large

Remarks

- ▶ Bound is minimax, same as Tikhonov
- Adaptivity via cross validation or Lepskii method

- $lackbox{M}=n^{rac{d}{2s+d}}\ll \sqrt{n}$ guarantees NO loss in accuracy
- ▶ M = O(1) if s is large

Computational complexity

Time:
$$Q(n^3) \rightarrow O(nn^{\frac{2d}{2s+d}})$$
 Memory: $Q(n^2) \rightarrow O(nn^{\frac{d}{2s+d}})$

Contributions & Open Questions

Contributions

- $M = \sqrt{n}$ gives optimal bounds
- ▶ $M \ll \sqrt{n}$ for adaptive sampling.
- ▶ Fast rates under smoothness conditions.

Open Questions

- Computational lower bounds?
- ► Efficient adaptive sampling

Back to big data...

- ▶ $n \approx 10~000$ Laptop
- ► $n \approx 100~000~\text{Desktop}^{\text{Laptop}}$
- ▶ $n \approx$ 1000 000 Cluster Laptop
- ► $n \approx 10~000~000$ TOP 10 Supercomputer Desktop
- $n \approx 100\ 000\ 000\ 22?$ Desktop