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Machine learning Algorithms

Desiderata

I flexible non-linear / non-parametric models

I scalable computation

I statistical guarantees



Statistics and computations

acterize the risk obtained when one employs a convex programming
estimator of the type [2]. Subsequently, we give several examples
of time-data tradeoffs in concrete denoising problems. Finally,
we conclude with a discussion of directions for further research.

Formally Stating Time-Data Tradeoffs
In this section, we describe a framework to state results on com-
putational and statistical tradeoffs in estimation. Our discussion
is relevant to general parameter estimation problems and in-
ference procedures; one may keep in mind the denoising problem
[1] for concreteness. Consider a sequence of estimation problems
indexed by the dimension p of the parameter to be estimated.
Fix a risk function «(p) that specifies the desired error of an
estimator. For example, in the denoising problem [1], the error
of an estimator of the form [2] may be specified as the worst case
mean squared error taken over all elements of the set S (i.e.,
supx*∈SE½kx*−x̂nðCÞk2ℓ2 $).
One can informally view an estimation algorithm that achieves

a risk of «(p) by processing n(p) samples with runtime t(p) as a
point on a 2D plot as shown in Fig. 1, with one axis representing
the runtime and the other representing the sample complexity.
To be precise, the axes in the plot index functions (of p) that
represent runtime and number of samples, but we do not empha-
size such formalities and rather use these plots to provide a
useful qualitative comparison of inference algorithms. In Fig. 1,
procedure A requires fewer samples than procedure C to achieve
the same error, but this reduction in sample complexity comes at
the expense of a larger runtime. Procedure B has both a larger
sample complexity and a larger runtime than procedure C; thus,
it is strictly dominated by procedure C.
Given an error function «(p), there is a lower bound on the

number of samples n(p) required to achieve this error using any
computational procedure [i.e., no constraints on t(p)]; such
information-theoretic or minimax risk lower bounds correspond to
“vertical lines” in the plot in Fig. 1. Characterizing these fun-
damental limits on sample complexity has been a traditional
focus in the estimation theory literature, with a fairly complete
set of results available in many settings. One can imagine asking
for similar lower bounds on the computational side, corresponding
to “horizontal lines” in the plot in Fig. 1: Given a desired risk «(p)
and access to an unbounded number of samples, what is a non-
trivial lower bound on the runtime t(p) of any inference algorithm
that achieves a risk of «(p)? Such complexity-theoretic lower
bounds are significantly harder to obtain, and they remain a central
open problem in computational complexity theory.

This research landscape informs the qualitative nature of the
statements on time-data tradeoffs we make in this paper. First,
we will not attempt to prove combined lower bounds, as is tra-
ditionally done in the characterization of tradeoffs between
physical quantities, involving n(p) and t(p) jointly; this is because
obtaining a lower bound just on t(p) remains a substantial chal-
lenge. Hence, our time-data tradeoff results on the use of more
efficient algorithms for larger datasets refer to a reduction in the
upper bounds on runtimes of estimation procedures with increases
in dataset size. Second, in any setting in which there is a compu-
tational cost associated with touching each data sample and in
which the samples are exchangeable, there is a sample threshold
beyond which it is computationally more efficient to throw away
excess data samples than to process them in any form. This ob-
servation suggests that there is a “floor,” as in Fig. 1 with proce-
dures E, F, G, and H, beyond which additional data do not lead
to a reduction in runtime. Precisely characterizing this sample
threshold is generally very hard because it depends on difficult-
to-obtain computational lower bounds for estimation tasks as well
as on the particular space of estimation algorithms that one may
use. We will comment further on this point when we consider
concrete examples of time-data tradeoffs.
To state our results concerning time-data tradeoffs formally,

we define a resource class constrained by runtime and sample
complexity as follows.

Definition 1: Consider a sequence of parameter estimation
problems indexed by the dimension p of the space of parameters
that index an underlying population. This sequence of estima-
tion problems belongs to a time-data class TD(t(p), n(p), «(p)) if
there exists an inference procedure for the sequence of problems
with runtime upper-bounded by t(p), with the number of i.i.d.
samples processed bounded by n(p), and which achieves a risk
bounded by «(p).
We note that our definition of a time-data resource class par-

allels the time-space resource classes considered in complexity
theory (2). In that literature, TISP(t(p), s(p)) denotes a class of
problems of input size p that can be solved by some algorithm
using t(p) operations and s(p) units of space.
With this formalism, classical minimax bounds can be stated as

follows. Given some function nðpÞ for the number of samples,
suppose a parameter estimation problem has a minimax risk of
«minimax(p) [which depends on the function nðpÞ]. If an estimator
achieving a risk of «minimax(p) is computable with runtime tðpÞ,
this estimation problem then lies in TDðtðpÞ; nðpÞ; eminimaxðpÞÞ.
Thus, the emphasis is fundamentally on the relationship between
nðpÞ and «minimax(p), without much focus on the computational
procedure that achieves the minimax risk bound. Our interest in
this paper is to fix the risk «(p) = «desired(p) to be equal to some
desired level of accuracy and to investigate the tradeoffs between
t(p) and n(p) so that a parameter estimation problem lies in
TD(t(p), n(p), «desired(p)).

Convex Relaxation
In this section, we describe the particular algorithmic toolbox
on which we focus, namely, convex programs. Convex optimi-
zation methods offer a powerful framework for statistical in-
ference due to the broad class of estimators that can be effectively
modeled as convex programs. Furthermore, the theory of convex
analysis is useful both for characterizing the statistical properties
of convex programming-based estimators and for developing
methods to compute such estimators efficiently. Most impor-
tantly from our viewpoint, convex optimization methods provide
a principled and general framework for algorithm weakening
based on relaxations of convex sets. We briefly discuss the key
ideas from this literature that are relevant to this paper in this
section. A central notion to the geometric viewpoint adopted in
this section is that of a convex cone, which is a convex set that is
closed under nonnegative linear combinations.

Representation of Convex Sets.Convex programs refer to a class of
optimization problems in which we seek to minimize a convex

Fig. 1. Tradeoff between the runtime and sample complexity in a stylized
parameter estimation problem. Here, the risk is assumed to be fixed to some
desired level, and the points in the plot refer to different algorithms that
require a certain runtime and a certain number of samples to achieve the
desired risk. The vertical and horizontal lines refer to lower bounds in sample
complexity and in runtime, respectively.
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Supervised Learning

Problem: Estimate f∗

Setting
yi = f∗(xi) + εi i ∈ {1, . . . , n}

I εi ∈ R, xi ∈ Rd random (unknown distribution)

I f∗ unknown
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Recall Kernel Ridge Regression

f̂λ(x) = Φ(x)>ŵλ =

n∑
i=1

K(x, xi)ĉ
λ
i , ĉλ = (K̂ + λnI)−1ŷ

I Φ(x)>Φ(x′) = K(x, x′)
kernel, e.g. Gaussian

I K̂ n by n data matrix

I ŷ outputs vector

Computational complexity

Time: O(n3) Memory: O(n2)



Statistical Guarantees

Let E(f) = E (y − f(x))2.

Theorem ( Caponetto, DeVito ’05 )
Assume ∃w such that f∗(x) = w>Φ(x), subexp noise, and bounded
kernel. Then w.h.p.

E(f̂λ)− E(f∗) .
1

λn
+ λ,

so that for λn = 1/
√
n, w.h.p.

E(f̂λn)− E(f∗) .
1√
n
.



Remarks

I Bound is minimax optimal (Caponetto, DeVito ’05)

I Adaptivity via cross validation or Lepskii method (Caponetto, Yao ’07,

De Vito Pereverzev R. ’07)

I Refined results, e.g. for Sobolev classes rate is n−
2s

2s+d (Caponetto,

DeVito ’05)

Computational complexity kills the method for large problems

Computational complexity

Time: O(n3) Memory: O(n2)



BIG DATA

Where it is possible to run Kernel Ridge regression

I n ≈ 10 000 Laptop (∼ 1 Gigabyte memory),

I n ≈ 100 000 Desktop (∼ 100 Gigabyte memory),

I n ≈ 1000 000 Cluster (∼ 10 Terabyte memory),

I n ≈ 10 000 000 Supercomputer (TOP10) (∼ 1 Petabyte memory)

High energy physics experiments: n ≈ 107 per second. . .



Outline

I Data independent subsampling

I Data dependent subsampling

I Adaptive subsampling



An idea

If K(x, x′) = ΦM (x)>ΦM (x′) with ΦM (x) ∈ RM

f̂λ,M (x) = ΦM (x)>ŵλ,M ŵλ,M = (Φ̂>Φ̂ + λnI)−1Φ̂>ŷ

I Φ̂ = (ΦM (x1), . . .ΦM (xn))> ∈ Rn×M

I ŵλ,M vector in RM

I ŷ outputs vector in Rn
by=

Computational complexity

Time:��
�O(n3) → O(nM2) Memory: ��

�O(n2) → O(nM)
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Kernel Approximation

Find ΦM (x) ∈ RM such that

K(x, x′) ≈ ΦM (x)>ΦM (x′)

Apply previous algorithm.



Random Fourier Features

Gaussian Kernel

e−γ‖x−x
′‖2 = Eω [eiω

>xe−iω
>x′

], ω ∼ N (0, γ)

≈ 1

M

M∑
j=1

eiω
>
j xe−iω

>
j x, ωj ∼ N (0, γ),

ΦM (x) :=
1√
M

(eiω
>
1 x, . . . , eiω

>
Mx).
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Random Features Expansion

Find q such that

K(x, x′) = Eω [q(x, ω)q(x′, ω)],

sample w1, . . . wM and consider

K(x, x′) ≈ ΦM (x)>ΦM (x′) :=
1

M

M∑
j=1

q(x, ωj)q(x, ωj).

ΦM (x) :=
1√
M

(q(x, ω1), . . . , q(x, ωM )).
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Examples of Random Features

I translation invariant kernels,

I dot product kernels,

I group invariant kernels,

I infinite neural nets kernels,

I homogeneous additive kernels,

I sum, products, composition of kernels,

I . . .



Computations

If M � n

I TIME:
O(nM2)� O(n3)

I SPACE:
O(nM)� O(n2)

Any loss in ACCURACY?



Previous Results

I *Many* different random features for different kernels
(Rahimi, Recht ’07, Vedaldi, Zisserman, . . . 10+)

I Theoretical guarantees: mainly kernel approximation
(Rahimi, Recht ’07, . . . , Sriperumbudur and Szabo ’15)

|K(x, x′)− ΦM (x)>ΦM (x′)| . 1√
M
,

I Theoretical guarantees: generalization bounds (Rahimi, Recht ’09,

Bach, ’15)

M = n ⇒ E(f̂λ,M )− E(f∗) ≤ 1√
n



Statistical Guarantees

Let E(f) = E(y − f(x))2.

Theorem (R., Camoriano, Rosasco ’16 )
Assume ∃w such that f∗(x) = w>Φ(x), subexp noise, and bounded
kernel.
Then w.h.p.

E(f̂λ,M )− E(f∗) .
1

λn
+

1

M
+ λ,

so that for

λn =
1√
n
, Mn =

1

λn

the following hold w.h.p.

E(f̂λn,Mn)− E(f∗) .
1√
n
.



Remarks

I Bound is minimax optimal, same as Tikhonov

I Adaptivity via cross validation or Lepskii method

I Refined results, e.g. for Sobolev classes rate is n−
2s

2s+d (R., Camoriano,

Rosasco ’16)

M =
√
n guarantees NO loss in accuracy

Computational complexity

Time: ��
�O(n3) → O(n2) Memory: ��

�O(n2) → O(n
√
n)
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M controls space, time and Statistics

Corollary: Same result if we set

Mn =
√
n, λn =

1

Mn
.

I M can be seen as a regularization parameter

New incremental algorithm

I 1. Pick a random feature
+ compute solution

2. Pick another random features
+ rank one update

3. Pick another random feature . . .

M controls at the same time: Space, Time, Statistics
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I Data independent subsampling

I Data dependent subsampling

I Adaptive subsampling



Data dependent subsampling with Nyström

{x̃1, . . . x̃M} ⊆ {x1, . . . , xn}

f̂λ,M (x) =

M∑
j=1

K(x, x̃j)ĉ
λ,M
i , ĉλ,M = (K̂>nMK̂nM+λnK̂>MM )−1K̂>nM ŷ

I (K̂nM )ij = K(xi, x̃j) n by M matrix

I (K̂MM )ij = K(x̃i, x̃j) M by M matrix

I ŷ outputs vector

by=

Computational complexity

Time:O(nM2) Memory: O(nM)
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Remarks

by=

I Plenty of methods for subsampling . . .

I Connections to Nyström for integral operators

I Previous results: kernel approximation ‖K̂ − K̂>nMK̂
†
MMK̂nM‖.

Any loss in ACCURACY?



Statistical Guarantees

Let E(f) = E(y − f(x))2.

Theorem (R., Camoriano, Rosasco ’15 )
Assume ∃w such that f∗(x) = w>Φ(x), subexp noise, and bounded
kernel.
Then w.h.p.

E(f̂λ,M )− E(f∗) .
1

λn
+ λ+

1

M
,

so that for

λn =
1√
n
, Mn =
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λn

the following hold w.h.p.

E(f̂λn,Mn)− E(f∗) .
1√
n
.
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Refined Results

Can we do better than uniform sampling?

Non-uniform subsampling Select the point x̃ = xi with probability pi.

I Leverage scores
pi := K̂>i (K̂ + λnI)−1K̂i,

with K̂i the i-th column of the data matrix K̂.



Refined Results

Can we do better than uniform sampling?

Non-uniform subsampling Select the point x̃ = xi with probability pi.

I Leverage scores
pi := K̂>i (K̂ + λnI)−1K̂i,

with K̂i the i-th column of the data matrix K̂.



Statistical Guarantees

Let E(f) = E(y − f(x))2.

Theorem (R., Camoriano, Rosasco ’15 )
Assume ∃w such that f∗(x) = w>Φ(x), subexp noise, bounded kernel,
and Φ induces a Sobolev kernel with smoothness s.
When

λn = n
2s

2s+d , Mn = n
d

2s+d

the following hold w.h.p.

E(f̂λn,Mn)− E(f∗) . n−
2s

2s+d .
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2s+d �
√
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I M = O(1) if s is large
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�O(n2) → O(nn
d
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Contributions & Open Questions

Contributions

I M =
√
n gives optimal bounds

I M �
√
n for adaptive sampling.

I Fast rates under smoothness conditions.

Open Questions

I Computational lower bounds?

I Efficient adaptive sampling

Back to big data. . .

I n ≈ 10 000 Laptop

I n ≈
100 000 ���

�DesktopLaptop

I n ≈
1000 000 ���

�
ClusterLaptop

I n ≈ 10 000 000

((((
((((

(((
TOP 10 SupercomputerDesktop

I n ≈
100 000 000 ��???Desktop


