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Machine learning Algorithms

Desiderata

» flexible non-linear / non-parametric models

» scalable computation

» statistical guarantees



Statistics and computations
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Supervised Learning

Problem: Estimate f,
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Supervised Learning

Problem: Estimate f. given S,, = {(z1,%1),---, (Zn,yn)}
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° (2, 92)

Setting
yi:f*(xi)—l—gi ie{l,...,n}

» &, € R,x; € R random (unknown distribution)

> f. unknown



Recall Kernel Ridge Regression

f’\(m) z) "o ZKI‘JIZ e, & = (K 4 Anl)7!

» &(z) " ®(2') = K(z,2")
kernel, e.g. Gaussian
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» Kn by n data matrix

> 7 outputs vector

Computational complexity

Time: O(n?) Memory: O(n?)



Statistical Guarantees

Let £(f) =E (y — f(2))*.

Theorem ( Caponetto, DeVito '05 )
Assume Jw such that f.(r) = w' ®(z), subexp noise, and bounded
kernel. Then w.h.p.
1
)
—E(fu) S —+A,
E(P) - E(f) S 5+
so that for A, = 1/+/n, w.h.p.

E(fA) = E(f) S
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Remarks

» Bound is minimax optimal (Caponetto, DeVito '05)

» Adaptivity via cross validation or Lepskii method (Caponetto, Yao '07,
De Vito Pereverzev R. '07)

. . __2s
> Refined results, e.g. for Sobolev classes rate is n~ 2s+d (Caponetto,
DeVito '05)

Computational complexity kills the method for large problems

Computational complexity

Time: O(n?) Memory: O(n?)



BIG DATA

Where it is possible to run Kernel Ridge regression
» n~~ 10 000 Laptop (~ 1 Gigabyte memory),
> n = 100 000 Desktop (~ 100 Gigabyte memory),
» n = 1000 000 Cluster (~ 10 Terabyte memory),
» n ~ 10 000 000 Supercomputer (TOP10) (~ 1 Petabyte memory)

High energy physics experiments: n ~ 107 per second. ..



Outline

» Data independent subsampling
» Data dependent subsampling

» Adaptive subsampling



An idea

If K(m,x’) = (I)]\,[(J,‘)T(b]\,[(x/) with (I’]\[(.T) S RM

PM(z) = @y (z) TMM MM = (@D + Anl) DTy



An idea

If K(a:,x’) = (I)]u(l‘)Tq)]u(x/) with (I’A[(.T) e RM

PM () =&y (x) MM MM = (@D + Anl) DTy

= ]

> = (Dpr(x1),... Par(2,))T € RPXM
» oMM vector in RM (/IS _

» 7 outputs vector in R"

Computational complexity

Time: O — O(nM?) Memory: O — O(nM)
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Kernel Approximation

Find ®,,(z) € RM such that

K(z,2") = ®p(z) " ®pr(2)

Apply previous algorithm.



Random Fourier Features

Gaussian Kernel
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Random Fourier Features

Gaussian Kernel
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Random Features Expansion

Find ¢ such that

K(.%‘, x/) =E, [q(x, W)Q(x/7 w)]7



Random Features Expansion

Find ¢ such that

K(.%‘,.’L'/) =K, [Q(x’w)Q(mlvw)L

sample w1, ...wps and consider

| M
K(z,2') ~ ®p(z) ®p(2) = MZq(x,wj)q(m,wj).
<I>M(.’L') = LM(Q(QZWI% ..7(](.%‘,(4)1\/[)).



Examples of Random Features

translation invariant kernels,
dot product kernels,

group invariant kernels,
infinite neural nets kernels,
homogeneous additive kernels,

sum, products, composition of kernels,



Computations

If M <n

» TIME:
O(nM?) < O(n?)

» SPACE:
O(nM) < O(n?)

Any loss in ACCURACY?



Previous Results
*Many* different random features for different kernels
(Rahimi, Recht '07, Vedaldi, Zisserman, ...10+)

Theoretical guarantees: mainly kernel approximation
(Rahimi, Recht '07, ..., Sriperumbudur and Szabo '15)

K (z,2') — ®ar(2) " @ar(a')] S

3

Theoretical guarantees: generalization bounds (Rahimi, Recht '09,
Bach, '15)

M=n = &fM)-&(f7) <

Sl-



Statistical Guarantees

Let £(f) =E(y — f(2))*.

Theorem (R., Camoriano, Rosasco '16 )

Assume Jw such that f.(r) = w' ®(z), subexp noise, and bounded
kernel.

Then w.h.p.
1 1
M
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the following hold w.h.p.

E(frMny —£(f.) <



Remarks

» Bound is minimax optimal, same as Tikhonov
» Adaptivity via cross validation or Lepskii method

. . __2s
> Refined results, e.g. for Sobolev classes rate is n™ 2s+4 (R., Camoriano,
Rosasco '16)



Remarks

» Bound is minimax optimal, same as Tikhonov
» Adaptivity via cross validation or Lepskii method

. . __2s
> Refined results, e.g. for Sobolev classes rate is n™ 2s+4 (R., Camoriano,
Rosasco '16)

M = /n guarantees NO loss in accuracy

Computational complexity

Time: O — 0(n?) Memory: O — O(n+/n)



M controls space, time and Statistics

Corollary: Same result if we set

1
My, =i, Ap=—01.
Vn A

» M can be seen as a regularization parameter
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M controls space, time and Statistics

Corollary: Same result if we set

1
My, =i, Ap=—01.
Vn A

» M can be seen as a regularization parameter

New incremental algorithm

» 1. Pick a random feature
+ compute solution
2. Pick another random features
+ rank one update

Validation Error

3. Pick another random feature . .. M

M controls at the same time: Space, Time, Statistics




Outline

» Data independent subsampling
» Data dependent subsampling
» Adaptive subsampling



Data dependent subsampling with Nystrom

{:i’l,...iijw} Q {xl,...,xn}



Data dependent subsampling with Nystrom

{Qfl,...ii‘ﬂ,{} Q {.Tl,...,l’n}

PM@) =3 K(z,z)ed™, M = (K] K+ K )~

KnMy



Data dependent subsampling with Nystrom

{:i’l,...iiju} g {.Il,...,l’n}

M
PM@) =S K@ager™, M = (R Rt wnK ) " Ky
j=1
> ( nM)” = K(x;,Z;) n by M matrix
» (K m)ij = K(&;,&;) M by M matrix o .
» 7 outputs vector

Computational complexity

Time:O(nM?) Memory: O(nM)



Remarks

=)
I
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nM

» Plenty of methods for subsampling . ..
» Connections to Nystrom for integral operators

_ _ R PP TS
> Previous results: kernel approximation || K — K, ;K ;0 Knisl)-

Any loss in ACCURACY?



Statistical Guarantees

Let £(f) =E(y — f(2))*.

Theorem (R., Camoriano, Rosasco '15 )

Assume Jw such that f.(r) = w' ®(z), subexp noise, and bounded
kernel.

Then w.h.p.
1 1
AMY < -
T —Ef) St A
so that for
A ——1 M,, = —1
VR T

the following hold w.h.p.

E(frMny —£(f.) <
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Outline
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Refined Results

Can we do better than uniform sampling?

Non-uniform subsampling Select the point £ = z; with probability p;.



Refined Results

Can we do better than uniform sampling?

Non-uniform subsampling Select the point £ = z; with probability p;.

> Leverage scores PR N
pi = KZT(K+ )\’ﬂ])ileﬁ

with IA{l the i-th column of the data matrix K.



Statistical Guarantees

Let £(f) =E(y — f(x))2.

Theorem (R., Camoriano, Rosasco '15 )

Assume Fw such that f.(r) = w' ®(x), subexp noise, bounded kernel,
and ® induces a Sobolev kernel with smoothness s.
When

Ay =n%+d, M, = n 7
the following hold w.h.p.

2s

E(Prmttn) = E(fo) S5
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Remarks

Bound is minimax, same as Tikhonov

Adaptivity via cross validation or Lepskii method

M =n7%m < \/n guarantees NO loss in accuracy
M =0(Q) if sis large



Remarks

v

Bound is minimax, same as Tikhonov

v

Adaptivity via cross validation or Lepskii method

v

M =n7%m < \/n guarantees NO loss in accuracy
> M =0()if sis large

Computational complexity

Time: O = O(nn=*1) Memory: O — O(nn7+a)



Contributions & Open Questions

Contributions
» M = /n gives optimal bounds
» M < +/n for adaptive sampling.

» Fast rates under smoothness conditions.

Open Questions
» Computational lower bounds?

» Efficient adaptive sampling

Back to big data. ..
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n ~ 10 000 Laptop

n =

100 000 Desktop “*P'°P
n =~

1000 000 Claster “aptop
n ~ 10 000 000

TOP 10 omputer Pesktop

n =

100 000 00Q 22?7Desktop



